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Abstract. There is an increasing interest in the study of optimality conditions of approximate
solutions for nonlinear optimization problems. In this paper, relationships between approximate
optimal values and approximate roots of a nonlinear function are explored via a nonlinear Lagrangian
function. Almost approximate optimal solutions are investigated by means of nonlinear Lagrangian
functions.
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1. Introduction

Unconstrained optimization technique is a popular method in solving nonlinear
optimization problems, such as dual methods and penalty function methods. Many
of these methods are established based on the assumption that an optimal solution
of the nonlinear optimization problem exists. However, it is well-known that many
mathematical programs do not have an optimal solution and thus we have to resort
to approximate solutions ([2,8,9]). Moreover, sometimes we do not need to find
an exact optimal solution even if it does exist due to the fact that it is often very
expensive to find an exact solution. As a matter of fact, most numerical methods
attempting at global optimization only yield approximate optimal solutions. There
have been some works in the literature which are devoted to investigating ap-
proximate solutions of the constrained optimization problems by means of penalty
functions (see, e.g., [8,9,11,19,20]).

Recently a general class of nonconvex constrained optimization problems have
been reformulated as unconstrained optimization problems via nonlinear Lagrangi-
ans. Under some conditions, necessary and sufficient optimality conditions, duality
theory, saddle point theory as well as exact penalization results among the original
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constrained optimization and its unconstrained nonlinear Lagrangian problem have
been established (see, e.g., [3,13,14,15,17,18]). Based on the results obtained in
Goh and Yang [3], Li and Sun [6] developed several algorithms for solving a con-
strained optimization problem by seeking the smallest root of a nonlinear function
of a real variable. It is worth noting that most of these results are established
on the basis of the assumption that the set of optimal solutions of the original
constrained optimization problem is not empty. So it is interesting to study approx-
imate solutions of a constrained mathematical program which does not necessarily
have an optimal solution by means of nonlinear Lagrangian functions. It is well-
known that Ekeland’s variational principle and penalty functions are effective tools
for studying approximate optimization (see, e.g., [2,7–11,16,19,20]). In particular,
we would like to mention their effectiveness in the study of necessary optimality
conditions for constrained and unconstrained programs and in the development of
numerical methods for approximate optimization. Nonlinear Lagrangian functions
have some similar properties of penalty functions. So it is possible to apply them
in the study of approximate solutions of constrained optimization problems.

In this paper we develop approximate methods for solving a class of nonconvex
constrained optimization problems by finding approximate roots of a well-behaved
nonlinear function. This can be seen as a further development of the theory and
method proposed in [3], [15] and [17]. We also investigate the possibility of ob-
taining the various versions of approximate solutions to a constrained program
by solving an unconstrained program formulated by using a general nonlinear
Lagrangian function. These results would be useful for the development of nu-
merical methods for a constrained program by solving an unconstrained program
and for the derivation of optimality conditions for various approximate solutions to
constrained optimization problems. As an application, a KKT type optimality con-
dition is obtained for a kind of approximate solution to a constrained program. Our
results are applicable to nonconvex Lipschitz programming problems that satisfy a
Mangasarian-Fromovitz constraint qualification.

This paper is organized as follows. In Section 2, we present some concepts,
basic assumptions and preliminary results. Section 3 deals with the relationship
between approximate optimal values and approximate roots of a nonlinear function
which is constructed via a type of nonlinear Lagrangian function. Section 4 studies
the approximate optimal solutions by means of the approximate optimal solutions
of the nonlinear Lagrangian functions. Section 5 concludes the paper.
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2. Preliminaries

In this section, we introduce some definitions and Ekeland’s variational principle.
Consider the following constrained optimization problem:

(P) inf f (x)

s.t. x ∈ X,

gj (x) ≤ 0, j = 1, . . . , m,

where X ⊆ Rn is a nonempty and closed set, f : X → R, gj : X → R, j =
1, ..., m are lower semi continuous (l.s.c. in short) functions. Let MP denote the
optimal value of (P).

In this paper, we assume, without loss of generality, that

inf
x∈X f (x) > 0.

Otherwise, we may replace the objective function f (x) by 1 + ef (x) and the res-
ulting constrained optimization problem has the same optimal solutions as that of
(P).

We denote by X0 the set of feasible solutions, i.e.,

X0 = {x ∈ X : gj (x) ≤ 0, j = 1, ..., m}.
Throughout the paper, we always assume that X0 �= φ. For any ε > 0, we

denote by X(ε) the set of ε feasible solutions, i.e.,

X(ε) = {x ∈ X : gj (x) ≤ ε, j = 1, ..., m}.
For the sake of convenience, we set

g(x) = max{g1(x), . . . , gm(x)}, ∀x ∈ X.

The following various definitions of approximate solutions are taken from Lor-
idan [9].

DEFINITION 2.1 Let ε > 0. The point x∗ ∈ X0 is called an ε-solution of (P) if

f (x∗) ≤ f (x) + ε, ∀x ∈ X0.

DEFINITION 2.2 Let ε > 0. The point x∗ ∈ X0 is called an ε-quasi solution of
(P) if

f (x∗) ≤ f (x) + ε‖x − x∗‖, ∀x ∈ X0.

REMARK 2.1 An ε-quasi solution is also a locally ε-solution. In fact, x∗ is an
ε-solution of f on {x ∈ X0 : ‖x − x∗‖ ≤ 1}.
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DEFINITION 2.3 Let ε > 0. If x∗ ∈ X0 is both an ε-solution and an ε-quasi
solution of (P), we say that x∗ is a regular ε-solution of (P).

DEFINITION 2.4 Let ε > 0. If x∗ ∈ X(ε) and

f (x∗) ≤ f (x) + ε,∀x ∈ X0,

we say that x∗ is an almost ε-solution of (P).

DEFINITION 2.5 The point x∗ ∈ X is said to be an almost regular ε-solution of
(P) if

(i) x∗ ∈ X(ε);
(ii) f (x∗) ≤ f (x) + ε, ∀x ∈ X0;
(iii) f (x∗) ≤ f (x) + ε‖x − x∗‖, ∀x ∈ X0.

PROPOSITION 2.1 [2]. (Ekeland’s variational principle). For any ε > 0, there
exists an x∗ ∈ X0 such that

(i) f (x∗) ≤ f (x) + ε, ∀x ∈ X0;
(ii) f (x∗) < f (x) + ε‖x − x∗‖, ∀x ∈ X0{x∗}.

Consequently, x∗ is a regular ε-solution of (P).

3. Approximate Optimal Solutions, Approximate Optimal Values and
Approximate Roots of A Nonlinear Function

In this section, we shall firstly establish approximate necessary and sufficient con-
ditions for (P). These results are parallel to that of Theorem 1 in [3], but different
forms of constrained optimization problems and different forms of unconstrained
programs are considered. Secondly, we will define a nonlinear function φε with a
precision parameter ε ≥ 0 and explore the relationship between the approximate
optimal values of (P) and the approximate roots of φε .

Consider the following unconstrained optimization problem:

(Q) inf
x∈X max{f (x) −MP , g(x)}.

PROPOSITION 3.1 We have

(i) If x∗ is an ε-solution of (P), then x∗ is an ε-solution of (Q).
(ii) If x∗ is an ε-solution of (Q), then x∗ is an almost ε-solution of (P).
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Proof. (i) Suppose that x∗ is an ε-solution of (P), then

f (x∗) ≤ MP + ε, ∀x ∈ X0.

To prove that x∗ is an ε-solution of (Q), we only need to show that

f (x∗)−MP = max{f (x∗)−MP , g(x
∗)}

≤ max{f (x) −MP , g(x)} + ε, ∀x ∈ X. (3.1)

When x ∈ X0, it is sufficient to show that

f (x∗)−MP ≤ f (x) −MP + ε.

This is obvious since x∗ is an ε-solution of (P). If x /∈ X0, then g(x) > 0. To prove
(3.1), it is sufficient to show that

f (x∗) ≤ MP + ε.

This follows from the fact that x∗ is an ε-solution of (P).
(ii) Suppose that x∗ is an ε-solution of (Q). Then

max{f (x∗)−MP , g(x
∗)} ≤ max{f (x)− MP, g(x)} + ε,∀x ∈ X.

In particular, we have

max{f (x∗)−MP , g(x
∗)} ≤ inf

x∈X0
max{f (x) −MP, g(x)} + ε = 0 + ε = ε.

Hence,

f (x∗) ≤ MP + ε,

gj (x
∗) ≤ ε, j = 1, ..., m.

�
REMARK 3.1 In Proposition 3.1, if ε reduces to 0, then the ε-solutions of (P) and
(Q) are exact solutions of (P) and (Q), respectively; an almost ε-solution of (P) is
also an exact solution of (P). In this case, solving (P) is equivalent to solving (Q)
in the sense that the two problems have the same sets of optimal solutions.

Let

φε(θ) = inf
x∈X max{f (x) − θ + ε, g(x)}, ε ≥ 0, θ ∈ R.

It is obvious that when ε = 0, seeking the value of φε(MP ) involves solving
problem (Q). From Remark 3.1, we know that solving (Q) will further give us
the solution of problem (P). This observation means that there may exist some
close relationship between the function φε and the solution of problem (P). In the
following we shall investigate this relationship.

First we state the following properties of φε , which can be easily checked.
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PROPOSITION 3.2 We have

(i) φε(MP ) ≥ 0, ∀ε ≥ 0; ϕε(MP − ε) = ϕ0(MP ),∀ε ≥ 0;
(ii) φε is a continuous, and non increasing function of θ;
(iii) for each fixed θ , φε(θ) is nondecreasing and continuous with respect to ε;
(iv) φε(θ) is continuous in (θ, ε).

PROPOSITION 3.3 For any ε > 0, there exists xε ∈ X0 such that xε is an ε-
solution of (P) and

0 ≤ φε(f (xε)) ≤ ε. (3.2)

Proof. It is clear that for any ε > 0, there exists xε ∈ X0 such that

f (xε) ≤ f (x) + ε, ∀x ∈ X0.

That is,

f (x) − f (xε) + ε ≥ 0, ∀x ∈ X0.

Therefore,

max{f (x) − f (xε)+ ε, g(x)} ≥ 0, ∀x ∈ X0. (3.3)

In addition,

max{f (x) − f (xε)+ ε, g(x)} ≥ 0, ∀x ∈ X\X0. (3.4)

It follows from (3.3) and (3.4) that

φε(f (xε)) ≥ 0.

Furthermore,

φε(f (xε)) ≤ max{f (xε)− f (xε)+ ε, g(xε)} = ε.

Thus, we have completed the proof. �
REMARK 3.2 1. It is evident from the proof that for any ε-solution xε of (P), (3.2)
holds.

2. a ∈ R1 is called an ε-optimal value of (P) if there exists x ∈ X0 such that
a = f (x) and a ≤ Mp + ε. a is called an ε-root of φε if 0 ≤ φε(a) ≤ ε. Thus,
Proposition 3.3 implies that any ε-optimal value of (P) is an ε-root of φε .

Let ε ≥ 0. Consider the perturbed problem of (P):

(Pε) inf f (x)

s.t. x ∈ X

gj(x) ≤ ε, j = 1, · · · ,m.
Let β(ε) denote the infimum of (Pε). Clearly, β(0) = MP .
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PROPOSITION 3.4 We have φ0(MP ) = 0. Furthermore, if

lim
ε→0+ β(ε) = MP , (3.5)

then MP is the smallest root of φ0, where ε → 0+ means that ε > 0 and ε → 0.

Proof. By Proposition 3.3, for any ε > 0, there exists xε ∈ X0 such that (3.2) and
the following relation hold.

MP ≤ f (xε) ≤ MP + ε. (3.6)

Taking limit in (3.2) when ε → 0+ and applying (iv) of Proposition 3.2 as well
as (3.6), we get φ0(MP ) = 0. Now assume that (3.5) holds. Let us show by
contradiction that MP is the smallest root of φ0.

Suppose to the contrary that there exists δ > 0 and

θ∗ ≤ MP − δ (3.7)

such that φ0(θ
∗) = 0. Then there exists xk ∈ X and εk ↓ 0 such that

max{f (xk)− θ∗, g(xk)} ≤ εk.

That is,

f (xk)− θ∗ ≤ εk (3.8)

and

gj (xk) ≤ εk, j = 1, . . . , m. (3.9)

It follows from (3.9) that β(εk) ≤ f (xk). This combined with (3.8) yields

β(εk) ≤ f (xk) ≤ θ∗ + εk. (3.10)

It follows from (3.7) and (3.10) that

β(εk) ≤ MP − δ + εk. (3.11)

Letting k → +∞ in (3.11), we obtain

lim inf
k→+∞

β(εk) ≤ MP − δ,

which contradicts (3.5). �
REMARK 3.3 1. Proposition 3.4 shows that the optimal value of (P) is a root of
φ0. When (3.5) holds, the optimal value of (P) is the least root of φ0. The algorithm
suggested in [17] can be applied to seek the least root of φ0.

2. Any one of the following conditions can guarantee (3.5) (see [4,14]):
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(i) X is nonempty and bounded;
(ii) if X is unbounded, lim

‖x‖→+∞,x∈X
f (x) = +∞;

(iii) if X is unbounded, there exist α > 0 and N > 0 such that g(x) ≥ α,∀x ∈
X such that ‖x‖ > N;

(iv) if X is unbounded, lim
‖x‖→+∞,x∈X

max{f (x), g(x)} = +∞;
(v) the set-valued map X(ε) is upper semi continuous (u.s.c. in short) at 0
(for example, ∃ε0 > 0 such that X(ε0) is nonempty and compact) and f is
uniformly continuous on a neighborhood U of X0.

3. Compared with Theorem 7.2 in [15], Proposition 3.4 has the following ad-
vantages:

(a) we did not assume the existence of an optimal solution for (P);
(b) we only assumed that f , gj are l.s.c. rather than continuous;
(c) our assumption (3.5) is much weaker than the conditions (i) and (ii) listed
above which were used in Theorem 7.2 in [15].

PROPOSITION 3.5 Let X1 = {x ∈ X : gj (x) < 0, j = 1, ..., m}. If 0 ≤ φε(θε) ≤
ε, then for any ε ′ > ε, ∃xε′ ∈ X such that

f (xε′) ≤ θε + ε ′ − ε, (3.12)

gj (xε′) ≤ ε ′, j = 1, ..., m. (3.13)

Furthermore, if either of the following two conditions holds:
(C1) for any x ∈ X0 such that f (x)+ε < θε, ∃x′ ∈ X1 such that f (x′)+ε < θε;
(C2) there exists xk ∈ X1, k = 1, 2, ... such that f (xk) → MP, then

θε ≤ f (x) + ε, ∀x ∈ X0. (3.14)

Proof. It follows from φε(θε) ≤ ε and the definition of φε that for any ε ′ > ε,
∃xε′ ∈ X such that

max{f (xε′)− θε + ε, g(xε′)} ≤ ε ′, ∀x ∈ X.

That is,

f (xε′) ≤ θε + ε ′ − ε,

gj (xε′) ≤ ε ′, j = 1, ..., m.

Thus, (3.12) and (3.13) hold. In what follows, we prove that if (C1) or (C2) holds,
then (3.14) holds. Suppose that (C1) holds. Let x ∈ X0. From φε(θε) ≥ 0, we
deduce that

max{f (x) − θε + ε, g(x)} ≥ 0,∀x ∈ X0. (3.15)
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If max{f (x)− θε + ε, g(x)} > 0, then f (x)− θε + ε > 0. Namely, θε ≤ f (x)+ ε.

If max{f (x) − θε + ε, g(x)} = 0, we show by contradiction that θε ≤ f (x) + ε.

Otherwise, f (x) + ε < θε , by condition (C1), there exists x′ ∈ X1 ⊂ X0 such
that f (x′)+ ε < θε. Consequently, max{f (x′)− θε + ε, g(x′)} < 0, contradicting
(3.15). So (3.14) has been proved.

Now suppose that (C2) holds. Suppose to the contrary that (3.14) does not hold.
Then θε > MP + ε. By condition (C2), we have xk ∈ X0 with

g(xk) < 0 (3.16)

such that f (xk) → MP . Thus,

θε > f (xk)+ ε (3.17)

when k is sufficiently large. Moreover, it follows from (3.15) and xk ∈ X0 that

max{f (xk)− θε + ε, g(xk)} ≥ 0, ∀x ∈ X0. (3.18)

The combination of (3.16), (3.17) and (3.18) yields a contradiction. So (3.14) holds.�

REMARK 3.4 1. (3.12), (3.13) and (3.14) together show that xε′ is an ε ′-almost
solution of (P).

2. Proposition 3.3 says that an ε-optimal value is an ε-root of φε . However, the
converse may not be true even under condition (C1) or (C2). But under condition
(C1) or (C2), an ε-root of φε is indeed an almost approximate optimal value of (P),
that is, for any ε ′ > ε, ∃xε′ ∈ X such that (3.12)–(3.14) hold.. To obtain an ε-root
of φε . One can use the bisection method by the following procedure:

Step 1: Choose θ1, θ2 ∈ R1 such that φε(θ1) ≥ 0 and φε(θ
2) ≤ 0.

Step 2: If φε(θ1) ≤ ε, then set θε = θ1 and stop; if φε(θ2) = 0, then set θε = θ2

and stop. Otherwise, go to Step 3.
Step 3: Compute φε(

θ1+θ2

2 ) via any global minimizing algorithm. If 0 ≤ φε

( θ
1+θ2

2 ) ≤ ε, then set θε = θ1+θ2

2 and stop. Otherwise, go to Step 4.

Step 4: If φε(
θ1+θ2

2 ) < 0, then set θ2 = θ1+θ2

2 and go to Step 3. If φε(
θ1+θ2

2 ) > ε,

then set θ1 = θ1+θ2

2 and go to Step 3.
3. It is not difficult to verify that if X0 = clX1 (‘cl’ stands for the closure of a

set) and f is continuous, then condition (C1) holds.
4. If either of the following conditions holds, then both (C1) and (C2) hold:
(i) f, gj (j = 1, ..., m) are locally Lipschitz, and the generalized Mangasarian-

Fromovitz constraint qualification holds at each x ∈ X0: there exists u ∈ TX(x)

such that

limsup
t→0

gj (x + tu) − gj (x)

t
< 0, ∀j ∈ J (x) = {j ∈ {1, . . . , m} : gj (x) = 0};
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where TX(x) is the contingent tangent cone of X at x.
(ii) when X is convex and gj (j = 1, ..., m) are strictly quasi convex or gj , j =

1, ..., m are convex, the Slater constraint qualification holds: X1 �= ∅.
5. If the relation (3.5) and (3.12), (3.13), (3.14) hold, then we get

lim
ε↓0

θε = MP .

Indeed, by (3.14), we have

θε ≤ MP + ε.

It follows that

lim sup
ε↓0

θε ≤ MP . (3.19)

On the other hand, by setting ε ′ = 2ε in (3.12) and (3.13), we get x2ε ∈ X such
that

f (x2ε) ≤ θε + ε

and

gj (x2ε) ≤ 2ε, j = 1, · · · ,m.
These combined with (3.5) yield

MP ≤ lim inf
ε↓0

θε. (3.20)

(3.19) and (3.20) give us lim
ε↓0

θε = MP .

This further implies that under condition (C1) or (C2) and condition (3.5), the
ε-roots of φε approach the optimal value MP of (P) as ε ↓ 0.

4. Approximate Solutions and Nonlinear Lagrangian

In this section, we deal with the relationship between almost approximate solutions
of (P) and approximate solutions of a nonlinear penalty problem.

Let Y ⊂ Rm+1. A function p : Rm+1 → R is called increasing if

∀y1, y2 ∈ Y with y1 − y2 ∈ Rm+1
+ implies p(y1) ≥ p(y2).

In this section, we will consider increasing and l.s.c. functions p defined on
Rm+1, which enjoy the following properties:

(A) There exist positive real numbers a1, . . . , am such that for any y = (y0,

y1, ..., ym) belonging to the domain of p with y0 ∈ R+, we have

p(y) ≥ max{y0, a1y1, . . . , amym}.
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(B) For any y0 ∈ R+,

p(y0, 0, . . . , 0) = y0.

Let

F(x, d) = (f (x), d1g1(x), . . . , dmgm(x)), ∀x ∈ X, d = (d1, ..., dm) ∈ Rm
+ .

We call L(x, d) = p(F(x, d)) a nonlinear Lagrangian corresponding to p.

PROPOSITION 4.1 [5]. L(., d) is l.s.c. for any d ∈ Rm+ .

PROPOSITION 4.2 [13]. L(x, d) = f (x),∀x ∈ X0, d ∈ Rm+ .

Consider the following nonlinear penalty problem (Qd):

inf
x∈X

L(x, d),

whereL(x, d) = p(f (x), d1g1(x), ..., dmgm(x)), p is the increasing function defined
as above and d = (d1, ..., dm) ∈ Rm+ .

PROPOSITION 4.3 For any ε > 0, there exists d(ε) ∈ Rm+ such that whenever
d − d(ε) ∈ Rm+ , every ε-solution of (Qd) is an almost ε-solution of (P).

Proof. For any d ∈ Rm+, there exists xεd ∈ X, which is an ε-solution of L(x, d) on
X, such that

p(f (xεd), d1g1(x
ε
d), ..., dmgm(x

ε
d)) = L(xεd, d) ≤ L(x, d) + ε, ∀x ∈ X.

(4.21)

By property (A) of p, ∃aj > 0, j = 1, ..., m such that

max{f (x), a1d1g1(x), ..., amdmgm(x)}
≤ p(f (x), d1g1(x), ..., dmgm(x)),∀x ∈ X. (4.22)

(4.21) and (4.22) jointly yield

max{f (xεd), a1d1g1(x
ε
d), ..., amdmgm(x

ε
d)} ≤ inf

x∈XL(x, d) + ε. (4.23)

Thus, we have

max{f (xεd), a1d1g1(x
ε
d), ..., amdmgm(x

ε
d)} ≤ MP + ε

since inf
x∈XL(x, d) ≤ MP . So we get

f (xεd) ≤ MP + ε, (4.24)
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max
1≤j≤m

{ajdjgj (xεd)} ≤ MP + ε. (4.25)

From (4.25), we get

[ min
1≤j≤m

aj ] · [ min
1≤j≤m

dεj ] · g(xεd) ≤ MP + ε.

Therefore, we can choose d(ε) = (dε1 , ..., d
ε
m) ∈ Rm+ such that

MP + ε

[ min
1≤j≤m

aj ] · [ min
1≤j≤m

dεj ]
< ε,

namely, xεd ∈ X(ε). This combined with (4.24) yields that xεd is an almost ε-
solution of (P). �
REMARK 4.1 Let the set-valued map X(ε) be u.s.c. at 0 and f uniformly con-
tinuous on a neighborhood U of X0 and εk → 0+. Let dk = (dk1 , ..., d

k
m) → +∞

(i.e., dkj → +∞ as k → +∞, j = 1, ..., m) be such that xεk
dk

∈ X(εk). By the u.s.c.
of X(ε) at 0, there exists xk ∈ X0 such that

‖xεk
dk

− xk‖ → 0 as k → +∞. (4.26)

It follows from (4.24) and (4.26) and the uniform continuity of f on U that

f (x
εk
dk
) → MP .

PROPOSITION 4.4 Let ε > 0. Then there exists d(ε) ∈ Rm+ such that whenever
d − d(ε) ∈ Rm+ , every ε-regular solution of (Qd) is an almost regular ε-solution of
(P).

Proof. Let d ∈ Rm+. Note that L(., d) is still a l.s.c. function (by Proposition 4.1)
such that inf

x∈X
L(x, d) ≥ inf

x∈X
f (x) > 0 according to our assumption. By Proposition

2.1, ∀ε > 0, ∃xεd ∈ X such that

L(xεd, d) ≤ inf
x∈X

L(x, d) + ε, (4.27)

and

L(xεd, d) ≤ L(x, d) + ε‖x − xεd‖, ∀x ∈ X. (4.28)

It follows from (4.27) and Proposition 4.1 that ∃d(ε) ∈ Rm+ such that whenever
d−d(ε) ∈ Rm+ , xεd is an almost ε-solution of (P). (4.28) and Proposition 4.2 as well
as property (A) of the function p jointly yield that

f (xεd) ≤ L(xεd, d) ≤ f (x) + ε‖x − xεd‖, ∀x ∈ X0.
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So we conclude that when d−d(ε) ∈ Rm+ , xεd is an almost regular solution of (P). �
For illustration, we now apply Proposition 4.4 by taking

Lr(x, d) = [f r(x) +
m∑

j=1

drj g
+
j

r
(x)]1/r , ∀x ∈ X, d = (d1, ..., dm) ∈ Rm

+,

where r > 1, to derive a so-called generalized KKT condition up to precision ε

(see, e.g., [1]) under the assumption that f , gj are locally Lipschitz.

PROPOSITION 4.5 Let ε > 0. Then there exists an almost regular approximate
solution xε for (P) and real numbers µj (ε) ≥ 0, j = 1, ..., m such that

(i) µj (ε) = 0 if gj (xε) ≤ 0;
(ii) µj(ε) > 0 if j ∈ J (ε) = {j : 0 < gj (xε) ≤ ε};
(iii) 0 ∈ ∂f (xε)+

∑

j∈J (ε)
µj (ε)∂gj(xε)+ εB∗ +NC

X (xε), where ∂f (x) denotes

the Clarke generalized subdifferetial of f at x, B∗ is the unit ball of Rn and
NC
X (x) stands for the Clarke normal cone of X at x ∈ X.

Proof. Let Lr(x, d) be selected as above. According to Proposition 4.2, ∃d(ε) =
(dε1 , ..., d

ε
m) ∈ Rm+ and xε ∈ X such that xε is a regular ε-solution of (Qd(ε)) and an

almost regular ε-solution of (P). The former tells us that xε solves min
x∈X[Lr(x, d) +

ε‖x − xε‖]. Note that Lr(x, d) is still locally Lipschitz. Applying the corollary of
Proposition 2.4.3 in [8], we get

0 ∈ ∂xL
r(xε, d)+ εB∗ + NC

X(xε)

⊆ s[f r−1(xε)∂f (xε)+
∑

j∈J (ε)
(dεj )

kgr−1
j (xε)∂gj (xε)] + εB∗ +NC

X (xε),

where s = [f r(xε) + ∑m
j=1(d

ε
j )

rg+
j

r
(xε)]1/r−1.

Let

µj (ε) = (dεj )
r · gr−1

j (xε)

sf r−1(xε)
, if j ∈ J (ε)

and

µj (ε) = 0, if gj (xε) ≤ 0.

Then

0 ∈ ∂f (xε)+
∑

j∈J (ε)
µj (ε)∂gj(xε)+ ε ′B∗ +NC

X (xε), (4.29)
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where ε ′ = ε

sf r−1(xε)
.

Note that

sf r−1(xε) ≥ [f r(xε)]1/r−1 · f r−1(xε) = 1.

Thus, ε ′ < ε. It follows from (4.29) that (iii) holds. �
REMARK 4.2 1. Taking different forms of nonlinear Lagrangian function L(x, d)
may yield different approximate optimality conditions for (P).

2. If f , gj are continuously differentiable, (iii) becomes

−[�f (xε)+
∑

j∈J (ε)
µj (ε)� gj (xε)] ∈ εB∗ +NC

X (xε).

Furthermore, if X = Rn, then (iii) becomes

‖ � f (xε)+
∑

j∈J (ε)
µj (ε)� gj (xε)‖ ≤ ε.

3. It follows from Proposition 2.1 that there exists x∗ ∈ X0 which solves

min f (x) + ε‖x − x∗‖
s.t. x ∈ X,

gj (x) ≤ 0, j = 1, ..., m.

Further, assume that f , gj are locally Lipschitz, applying Theorem 6.1.1 in [1],
we obtain λ ≥ 0, µj ≥ 0, j = 1, ..., m, not all zero, such that

µj = 0, if gj (x
∗) > 0

and

0 ∈ λ∂f (x∗)+
m∑

j=1

µj∂gj (x
∗)+ λεB∗ +NC

X (x
∗),

which is a Fritz-John type condition up to precision ε. To obtain the KKT type con-
dition up to precision ε, i.e., λ �= 0, one must impose some constraint qualification
(see Remark 5.5 in [9]).

5. Conclusions

In this paper, we investigated approximate optimal solutions of a constrained math-
ematical programming problems via nonlinear Lagrangian functions. We discussed
the relationship between approximate optimal values and approximate roots of
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a nonlinear function. The almost approximate optimal solutions and approxim-
ate generalized KKT type optimality conditions for a constrained optimization
problem were studied by means of nonlinear Lagrangian functions.
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